Mitochondrial DNA ligase III function is independent of Xrcc1.

نویسندگان

  • U Lakshmipathy
  • C Campbell
چکیده

Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function would also be dependent upon Xrcc1. However, several lines of evidence indicate that this is not the case. First, western blot analysis failed to detect Xrcc1 protein in mitochondrial extracts. Second, DNA ligase III levels present in mitochondrial protein extracts from EM9 cells were indistinguishable from those seen in similar extracts from wild-type (AA8) cells. Third, the mitochondrial DNA content of both cell lines was identical. Fourth, EM9 cells displayed no defect in their ability to repair spontaneous mitochondrial DNA damage. Fifth, while EM9 cells were far more sensitive to the cytotoxic effects of ionizing radiation due to a defect in nuclear DNA repair, there was no apparent difference in the ability of EM9 and AA8 cells to restore their mitochondrial DNA to pre-irradiation levels. Thus, mitochondrial DNA ligase III function is independent of the Xrcc1 protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a BRCT domain in the interaction of DNA ligase III-α with the DNA repair protein XRCC1

The BRCT domain (for BRCA1 carboxyl terminus) is a protein motif of unknown function, comprising approximately 100 amino acids in five conserved blocks denoted A–E. BRCT domains are present in the tumour suppressor protein BRCA1 [1—3], and the domain is found in over 40 other proteins, defining a superfamily that includes DNA ligase III-a and the essential human DNA repair protein XRCC1. DNA li...

متن کامل

XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro.

The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-beta in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1. Finally, we demonstra...

متن کامل

A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair.

XRCC1 protein is essential for viability in mammals and is required for efficient DNA single-strand break repair and genetic stability following DNA base damage. We report here that XRCC1-dependent strand break repair in G(1) phase of the cell cycle is abolished by mutations created within the XRCC1 BRCT domain that interact with DNA ligase III. In contrast, XRCC1-dependent DNA strand break rep...

متن کامل

Differential recruitment of DNA Ligase I and III to DNA repair sites

DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluoresce...

متن کامل

Poly(ADP-ribose)polymerase 1 stimulates the AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1

APE-independent base excision repair (BER) pathway plays an important role in the regulation of DNA repair mechanisms. In this study it has been found that recently discovered tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the AP site cleavage reaction to generate breaks with the 3'- and 5'-phosphate termini. The removal of the 3'-phosphate is performed by polynucleotide kinase phosphatase (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2000